南京二手木材回收 加入收藏  -  设为首页
您的位置:二手木材回收 > 木材百科 > 正文

目录

1,核废料运输对人有影响吗?

核废料运输对人有影响吗?

先说结论,核废料运输有严格的规定,正常情况下(我说正常情况下,基本上是所有情况),按照规定操作是不会对操作人员和运输人员完成什么放射性的,运输人员几乎不会因此受到放射性辐照。
实际上,每个核电站都有乏燃料储存水池,从堆芯卸载的燃烧过的乏燃料会在核燃料厂房的水池内存储十几年,乏燃料水池存满了才会集中往外运输,一个核电站的生命周期内也运输不了几次,现在的三代技术的乏燃料水池可以存储近20年的乏燃料。乏燃料水池存满后怎么样在运输呢,会有专门的铅制容器,从乏燃料水池内先转运至铅罐内,目前的三代核电技术这个过程是移动的,由乏燃料操作系统进行自动操作,而且全部过程在水下进行,透出水面的放射性已经不高,而且整个过程人不需要近距离参与,即使以前的核电技术需要人在水池边上操作,那也都是穿了防辐射衣服的,放射性也不大,远低于国家规定的安全标准。
乏燃料装进铅罐之后,会自动运输到车上,司机开走就是了,这时铅罐在表面的辐射已经很低,符合国家标准,对司机基本没有任何影响。然后运输到燃料后处理场,又是类似的操作,大部分都是机器操作。


作者:Oneskiff
链接:https://www.zhihu.com/question/322332118/answer/679466616
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

2,什么是mox燃料

MOX燃料 MOX燃料是混合燃料的简写,目前用得最多的是UO2和PUO2构成的氧化铀钚燃料。 可以提高资源的利用率,解决核燃料资源不足的问题。 MOX燃料用作轻水反应堆燃料组件在当前是必要的,具有现实意义。大量的研究和实验证明,换装1/3的MOX组件,反应堆运行是安全的,技术上是可行的。与原来用U02燃料相比。降低组件制造费用约30%,可见此举经济上是有竞争力的。因此,许多发展核电的国家,当核电能力达10000MW时,就将MOX燃料用于LWR的问题提至议事日程。 MOX燃料是一种核燃料,它包含多个可增殖的可衰变氧化物,特别是PuO2(氧化钚)与UO2(氧化铀)的混合燃料(UO2来源广泛,包括天然的、经过再加工的,以及核废料当中的)。钚是一种自然界不存在的人造放射性同位素,铀燃料在反应堆中燃耗时会产生钚。在核燃料循环中,如何有效合理地利用钚,一直是原子能和平利用的重要任务。最初利用铀的链式反应生产钚是为了军事目的,即生产核武器。但随着高富集铀生产技术的发展以及钚量的增加,钚除用于制备核武器外,还可以制成核燃料,用作和平目的,其中最有效的利用就是钚铀混合氧化物燃料,即MOX燃料。MOX可以利用乏燃料中的钚。一般情况下,乏燃料中钚的含量为1%,其中2/3的物质具有放射性,钚239占50%,钚241占15%,每年全世界大约有70吨可用来生产MOX燃料的钚被当作核废料倾倒。有统计数据表明,钚的单次循环利用可以将铀原料的利用率提高12%,而如果将核废料中的铀也循环利用,那么利用率将提高22%。 快堆中常用的核燃料是钚239,而钚239发生裂变时放出来的快中子会被装在反应区周围的铀238吸收,又变成钚239。这就是说,在堆中一边消耗钚239,又一边使铀238转变成新的钚239,而且新生的钚239比消耗掉的还多,从而使堆中核燃料变多,实现增殖。目前,各国发展的主要是用MOX作燃料,用液态钠作冷却剂的快中子增殖堆,它的倍增时间是30多年。也就是说,只要添加铀238,每过30多年,快堆核电站就可翻一番。理论上快堆可以将铀238、铀235及钚239全部加以利用,并将铀的利用率提高到60%-70%,比热堆中的压水堆高140倍,比重水堆高70倍以上。 发展MOX燃料是实施核燃料闭式循环战略的必然要求。现在除美国等少数国家采取一次性通过外,其他国家都计划进行后处理。我国也计划对乏燃料进行后处理,这样可以回收可裂变的钚和铀。通常反应堆卸出的乏燃料中存留有约1%的钚,其中的2/3就是Pu-239。全世界每年产生近100t存留于乏燃料中的钚。钚的再循环使从最初的铀得到的能源增加约17%,如果对铀也进行再循环,这一数字将达到约30%。 发展MOX燃料有利于保护环境。核电站产生乏燃料,其中包含较高的长寿命放射性废物。Pu、Np、Am、Cm等锕系核素和长寿命裂变产物(LLFP)构成了对地球环境主要的长期放射性危害。如果采取后处理闭式方式,将乏燃料中的U、Pu提取出来进行再循环利用,则7个U02燃料组件生成1个MOX组件和一些玻璃固化高放废物,其结果是使乏燃料处置的体积、数量和费用的下降约65%.核废物的体积和放射性都将大大减小。 铀(Uranium)的原子序数为92的元素,其元素符号是U,是自然界中能够找到的最重元素。在自然界中存在三种同位素,均带有放射性,拥有非常长的半衰期(数亿年~数十亿年)。此外还有12种人工同位素(铀-226~铀-240)。铀在1789年由马丁·海因里希·克拉普罗特(Martin Heinrich Klaproth)发现。铀化合物早期用于瓷器的着色,在核裂变现象被发现后用作为核燃料。 钚是一种放射性元素,是原子能工业的重要原料,可作为核燃料和核武器的裂变剂。投于长崎市和广岛市的原子弹,都使用了钚制作内核部分。其也是放射性同位素热电机的热量来源,常用于驱动太空船。钚是世界上第二毒的物质。

3,乏燃料的乏燃料衰变热

当核反应堆关闭的时候,链式核反应也随之停止,然而由于衰变产物的β衰变,乏燃料仍然会放出大量的热量。因此,在核反应堆关闭的时刻,衰变放出的热功率大约是核反应堆稳定工作时功率的7%。在反应堆关闭1小时以后,衰变热功率约为稳定工作时的功率的1.5%;一天以后变为0.4%;一周后变为0.2%。衰变热功率随着时间会继续慢慢的减小。从核反应堆中移除的乏核燃料通常会储存在装满水的乏核燃料池中,需要保存一年甚至更长的时间以使其冷却,同时对其放射性提供屏蔽。实际中使用的乏核燃料池设计通常不依赖被动的冷却,而是需要使用热交换器,让水在其中循环流动,从而将衰变产生的热量带走。冷却到一定程度的乏核燃料会从乏核燃料池中移出,放入特制的干式贮存桶或湿式中间贮存设备之中长期储存,以腾出乏核燃料池的空间,并作为最终处置前的替代方案。

4,乏燃料的乏燃料最终处置

由于长寿命核废料(包括乏燃料)必须长期同人类和环境隔绝。广泛接受的看法认为,乏燃料、核燃料再处理的高放射性废物以及钚废料需要在妥善设计的场所存放几万年到一百万年,以减少其放射性对环境的污染。同时,必须确保钚和高浓缩铀不被用于军事目的。一个基本的共识是,把乏燃料存放于地下几百米的储存场所要比将其堆放在地表更安全。因此把这些废料存放在稳定地质构造中人工建造的地下储存所(repository)是一种可行的方案,这便是乏燃料的最终处置方式,同时也叫深地质处置。乏燃料的最终处置是指在稳定的地质构造中开掘的放射性核废料存放场所,一般在地下300米以下。核废料形态、其包装、场地的密封和防渗以及地质条件等诸多因素决定了储放场所成功与否。对深地质处置的基本要求是长时间将核废料与环境隔绝开来,同时只需要极少或者不需要维护。深地质处置的时间尺度很大,通常从几万年到一百万年。在深地质处置中,盛放在容器中的核废料被以某种方式密封,存放在隧道里。最外面一层防护机制就是地质构造本身(比如岩层)。